首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12169篇
  免费   1675篇
  国内免费   3227篇
化学   13286篇
晶体学   247篇
力学   146篇
综合类   76篇
数学   19篇
物理学   3297篇
  2024年   9篇
  2023年   183篇
  2022年   298篇
  2021年   470篇
  2020年   743篇
  2019年   503篇
  2018年   428篇
  2017年   571篇
  2016年   707篇
  2015年   670篇
  2014年   759篇
  2013年   1174篇
  2012年   852篇
  2011年   938篇
  2010年   679篇
  2009年   802篇
  2008年   772篇
  2007年   825篇
  2006年   750篇
  2005年   694篇
  2004年   595篇
  2003年   575篇
  2002年   392篇
  2001年   325篇
  2000年   296篇
  1999年   258篇
  1998年   246篇
  1997年   224篇
  1996年   222篇
  1995年   226篇
  1994年   155篇
  1993年   153篇
  1992年   145篇
  1991年   103篇
  1990年   70篇
  1989年   55篇
  1988年   58篇
  1987年   29篇
  1986年   25篇
  1985年   22篇
  1984年   16篇
  1983年   6篇
  1982年   12篇
  1981年   6篇
  1980年   10篇
  1978年   3篇
  1977年   4篇
  1973年   3篇
  1972年   2篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Metal–organic frameworks containing multiple metals distributed over crystallographically equivalent framework positions (mixed-metal MOFs) represent an interesting class of materials, since the close vicinity of isolated metal centers often gives rise to synergistic effects. However, appropriate characterization techniques for detailed investigations of these mixed-metal metal–organic framework materials, particularly addressing the distribution of metals within the lattice, are rarely available. The synthesis of mixed-metal FeCuBTC materials in direct syntheses proved to be difficult and only a thorough characterization using various techniques, like powder X-ray diffraction, X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy, unambiguously evidenced the formation of a mixed-metal FeCuBTC material with HKUST-1 structure, which contained bimetallic Fe−Cu paddlewheels as well as monometallic Cu−Cu and Fe−Fe units under optimized synthesis conditions. The in-depth characterization showed that other synthetic procedures led to impurities, which contained the majority of the applied iron and were impossible or difficult to identify using solely standard characterization techniques. Therefore, this study shows the necessity to characterize mixed-metal MOFs extensively to unambiguously prove the incorporation of both metals at the desired positions. The controlled positioning of metal centers in mixed-metal metal–organic framework materials and the thorough characterization thereof is particularly important to derive structure–property or structure–activity correlations.  相似文献   
62.
This review summarizes the use of photoreactions that replace conventional heating processes for growing oxide thin films from chemical solutions. In particular, this review outlines key variables in photoreactions that affect epitaxial and polycrystalline thin film growth, including precursor materials, laser wavelength, laser fluence, and carbon. In addition, the features of the photoreaction process that can be controlled at a low temperature by oxygen non-stoichiometry are examined. Likewise, functions that are neither achieved by developing a gradient structure nor controlled by a thermal equilibrium reaction are detailed. Two new concepts are presented, known as photoreaction of nanoparticles (PRNP) and photoreaction of a hybrid solutions (PRHS), in which crystal nuclei are pre-dispersed in a metal–organic compound film. This method has successfully produced flexible phosphor films used as resistor or thermistor electronic components. Finally, thin film growth using different light sources such as flash lamps and femtosecond lasers (fs) is explored.  相似文献   
63.
Cancer stem cells (CSC) constitute a cell subpopulation in solid tumors that is responsible for resistance to conventional chemotherapy, metastasis and cancer relapse. The natural product Salinomycin can selectively target this cell niche by directly interacting with lysosomal iron, taking advantage of upregulated iron homeostasis in CSC. Here, inhibitors of the divalent metal transporter 1 (DMT1) have been identified that selectively target CSC by blocking lysosomal iron translocation. This leads to lysosomal iron accumulation, production of reactive oxygen species and cell death with features of ferroptosis. DMT1 inhibitors selectively target CSC in primary cancer cells and circulating tumor cells, demonstrating the physiological relevance of this strategy. Taken together, this opens up opportunities to tackle unmet needs in anti-cancer therapy.  相似文献   
64.
Akaganeite (β-FeOOH) is a widely investigated candidate for photo(electro)catalysis, such as water splitting. Nevertheless, insights into understanding the surface reaction between water and β-FeOOH, in particular, the hydrogen evolution reaction (HER), are still insufficient. Herein, a set of first-principles calculations on pristine β-FeOOH and halogen-substituted β-FeOOH are applied to evaluate the HER performance through the computational hydrogen electrode model. The results show that the HER on β-FeOOH tends to occur at Fe sites on the (010) surface, and palladium and nickel are found to serve as excellent co-catalysts to boost the HER process, due to the remarkably reduced free energy change of hydrogen adsorption upon loading on the surface of β-FeOOH, demonstrating great potential for efficient water splitting.  相似文献   
65.
The global demand for energy and the concerns over climate issues renders the development of alternative renewable energy sources such as hydrogen (H2) important. A high-spin (hs) FeII complex with o-phenylenediamine (opda) ligands, [FeII(opda)3]2+ (hs- [6R] 2+), was reported showing photochemical H2 evolution. In addition, a low-spin (ls) [FeII(bqdi)3]2+ (bqdi: o-benzoquinodiimine) (ls- [0R] 2+) formation by O2 oxidation of hs- [6R] 2+, accompanied by ligand-based six-proton and six-electron transfer, revealed the potential of the complex with redox-active ligands as a novel multiple-proton and -electron storage material, albeit that the mechanism has not yet been understood. This paper reports that the oxidized ls- [0R] [PF6]2 can be reduced by hydrazine giving ls-[FeII(opda)(bqdi)2][PF6]2 (ls- [2R] [PF6]2) and ls-[FeII(opda)2(bqdi)][PF6]2 (ls- [4R] [PF6]2) with localized ligand-based proton-coupled mixed-valence (LPMV) states. The first isolation and characterization of the key intermediates with LPMV states offer unprecedented molecular insights into the design of photoresponsive molecule-based hydrogen-storage materials.  相似文献   
66.
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4)2⋅6 H2O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2(RCN)2](BF4)2nRCN (n=2 for R=CH3 ( 1 ) and n=0 for R=C2H5 ( 2 ) C3H7 ( 3 ), C3H5 ( 4 ), CH2Cl ( 5 )) exhibiting spin crossover (SCO). SCO in 1 and 3 – 5 is complete and occurs above 160 K. In 2 , it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2=78 K, T1/2=123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2 . An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS−VLS) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe–nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2(C2H5CN/C3H7CN)2](BF4)2 mixed crystals ( 2 a , 2 b ), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1 – 5 suggest a particular possibility of 2 to adopt a low (140–145°) value of its Fe-N-C(propionitrile) angle.  相似文献   
67.
Solution-based, anionic doping represents a convenient strategy with which to improve upon the conductivity of candidate anode materials such as Li4Ti5O12 (LTO). As such, novel synthetic hydrothermally-inspired protocols have primarily been devised herein, aimed at the large-scale production of unique halogen-doped, micron-scale, three-dimensional, hierarchical LTO flower-like motifs. Although fluorine (F) doping has been explored, the use of chlorine (Cl) dopants is the primary focus here. Several experimental variables, such as dopant amount, lithium hydroxide concentration, and titanium butoxide purity, were probed and perfected. Furthermore, the Cl doping process did not damage the intrinsic LTO morphology. The analysis, based on interpreting a compilation of SEM, XRD, XPS, and TEM-EDS results, was used to determine an optimized dopant concentration of Cl. Electrochemical tests demonstrated an increased capacity via cycling of 12 % for a Cl-doped sample as compared with pristine LTO. Moreover, the Cl-doped LTO sample described in this study exhibited the highest discharge capacity yet reported at an observed rate of 2C for this material at 143mAh g−1. Overall, these data suggest that the Cl dopant likely enhances not only the ion transport capabilities, but also the overall electrical conductivity of our as-prepared structures. To help explain these favorable findings, theoretical DFT calculations were used to postulate that the electronic conductivity and Li diffusion were likely improved by the presence of increased Ti3+ ion concentration coupled with widening of the Li migration channel.  相似文献   
68.
《Mendeleev Communications》2020,30(4):456-458
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   
69.
本实验通过模拟植物光合作用,设计制备了新颖的光电联合催化池3D-ZnO/Ni BiVO4/FTO,用电化学沉积法制备了泡沫镍负载的ZnO纳米棒光电阴极和BiVO4光电阳极,以0.1 mol·L^−1 KHCO3水溶液作为电解质,1 mmol·L^−1曙红Y为光敏剂,在−0.6 V硅太阳电池的电压下光电催化还原CO2得到了乙醇、乙酸和甲醇,总产率22.5μmol·L^−1·h^−1·cm^−2。实现了将太阳能贮存为化学能并减少了空气中的CO2,加深了学生对绿色化学和植物Calvin循环机理的理解。  相似文献   
70.
Thermal analyses, using differential scanning calorimetry (DSC) and dilatometry, reveal an important anomaly at low temperature for Au-25 wt.% Cu composition after homogenization at 700°C during 2 hours under vacuum followed by heating up to 160°C before water quenching. This anomaly has been already observed and not explained. Surface characterization, using scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning tunneling microscopy (STM), exhibits a specific topography, consisting of a nanostructured surface. The precipitates of nanostructured particles are homogeneously scattered all over the surface for this 18-carat gold alloy. Moreover, X-ray photoelectron spectroscopy (XPS) shows that the composition of the observed particles corresponds to cuprous oxide phase (Cu2O). The formation of such material can be explained by the diffusion of copper atoms from the lattice to the surface at 160°C. Pulsed radio-frequency glow discharge optical emission spectroscopy (RF GD-OES) further proves the proposed Cu2O formation through a diffusion process. The appearance of such cuprous oxide nanoparticles on the Au-Cu alloy surface explains the low-temperature DSC and dilatometry anomaly and affects directly the surface electrical resistance at low temperature. These results might open a large gate for new ideas to investigate in catalytic, electronic, and antimicrobial activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号